
SWC DB: Abstract

SWC DB
(Super Wide Column Database)
https://github.com/kashirin-alex/swc-db

The major differences “Super Wide Column Database” has to commonly known Wide Column Databases are SWC-DB does not have Tables nor

Namespaces and while cell key as known to be in Wide Column Database structured in timestamp, row, column-family and column-family-qualifier in

SWC-DB a cell key is a list of Fractions with timestamp. The differences in SQL structure, it is in-place of 'select columns from “table_name”;' with SWC-DB

It is ' select [where_clause [Columns-Intervals]]; '. Considering to structure a Wide-Column-DB in SWC-DB it can be in these forms key=[F(row),

F(column-family), F(column-family-qualifier)] or the actual column is column-family with key=[F(row), F(column-family-qualifier)].

The Fractions in SWC-DB cell-key let numerous “qualifiers”, as known to be, with a range-locator able to respond with the ranges applicable to the

fractions of a scan specs. As a result a scan-spec of key=[>“”, >=”THIS”] will scan ranges that consist the “THIS” on comparator with a help of meta-

column that include, additionally to the key-begin and key-end of a range, the minimal and maximum values of the fractions in an aligned manner. Hence

the name “Super Wide Column“ a column can have cells with one key [F(1st)] second key [F(1st), F(2nd)] third key [F(1st), F(2nd), F(3rd), ..] and the

scan/select is possible on [F(1st)] and above that will return all the cells having fraction one equal “1st ” and so as without further indexations to select

cells with key [>F(), F(2nd)] returning the cells with second fraction equal “2nd”.

The comparators available in SWC-DB are NONE, PF ,GT, GE, EQ, LE, LT, NE, RE while some have limitations for range-locator as regexp is evaluated as

NONE being anything-match. Additionally the conditions of comparators applied on the corresponding “ key-sequence ” by column's schema that include

LEXIC, VOLUME, FC_LEXIC, FC_VOLUME that define the sequence of cells in a range. If a prefix (PF) is desired than the choice will be the LEXIC or with

FC_LEXIC as VOLUME (volumetric) will not correspond to the char-byte sequence while if desired to have for example a decimal sequence of 0, 1, 2 .. 11

the VOLUME is the right choice whereas the FC_VOLUME unlike tree-wise on fraction keeps the sequence of smaller key fractions-count at the beginning

in the range.

SWC-DB use a self-explanatory master-ranges that define ranges to meta-ranges of data-ranges(cells-range) whereas on range-locator scan includes the

Key comparison on the comparators of request, resulting in most narrowed ranges for the scan of cells. For the purpose SWC-DB have reserved columns

1: Ranges("SYS_MASTER_LEXIC"), 2: Ranges("SYS_MASTER_VOLUME"), 3: Ranges("SYS_MASTER_FC_LEXIC"), 4: Ranges("SYS_MASTER_FC_VOLUME"), 5:

Ranges("SYS_META_LEXIC"), 6: Ranges("SYS_META_VOLUME"), 7: Ranges("SYS_META_FC_LEXIC"), 8: Ranges("SYS_META_FC_VOLUME"), 9:

Statistics("SYS_STATS"). The Statistics column used for internal systems monitoring and it can be used like any other counter column (keeping for the

purpose) with fraction of [period, role, instance, metric] with counter value

The storage-form in the SWC-DB on FS is based by column-id and range-id, that on path consist CellStores and CommitLog files while at any point one

server is responsible for a range-id on column-id and of a path root. The CellStores are files storing Cells in serialized form that are after latest

compaction whereas Commit-Log is Fragments of current added data, one fragment is written at a time on a threshold reach or on shutdown.

author: Kashirin Alex
kashirin.alex@gmail.com

91 /September 16, 2020

https://github.com/kashirin-alex/swc-db

SWC DB: Abstract - capabilities

The limitations that can be over-seen are:
✗ Maximum number of columns, it is store-size of int64(264) – 10(reserved cols) which can be improved by CID to be a string-type.
✗ Maximum size of Value or Key-Fraction(after serialization), it is 4GB, while for such data size other limitations apply.

The capabilities to expect:
✔ A Manager-Root with definitions of 1K2 ranges (a use of 1 GB RAM) is a definition of 1K4 Meta-Ranges that sums-down to 1K8 Data-Ranges, with

range-size configuration to 10GB that makes a total storage volume for a cell size average of 256KB to be a quarter of Yotta Byte.
✔ A client can read at 100%(while Client's and Ranger's are equivalent) bandwidth, considering a perfect scan case of each client is requesting on

different ranges, number of clients at a given time can be by the number of data Rangers using 100% bandwidth each.
✔ Maximum number of concurrent connections to a given server instance, it is the total available ports on the server by the number of configured

IPv4 and IPv6 with support of multi-homed / multiple interfaces,

Some examples:
• Search indexing at https://thither.direct/opensearch/ with Wide Column it is being row=”sequences-of-words:domain:path” cf=”lang” whereas

with Super Wide Column it can be changed to key=[“sequences-of-words”, “domain”, “path”, “lang”], makes the scan-select much optimized,
especially if to query words-data of a domain & path, it would go on to ranges that start with domain & path skipping the seek through ranges of
several other many domains that as well include the same word-sequences. While to have the same query on a Wide Column would require tripling
the volume of data by using more indexes of word-sequences on a domain (and path) such as. row=”domain:sequences:path” &
row=”domain:path:sequences”. At current period the “open-search” on Thither.Direct does not offer querying data(words) on a site:domain or
info:url-path as it is unreasonable over the data-volume overheads.

• A theoretical requirement for a building security tracking. Track of how many(an atomic-counter) personnel passed in an area of a building by role on a
day:

author: Kashirin Alex
kashirin.alex@gmail.com

Column: “traffic” - CID(10)
..
018046|path-1|path-2|path-3|path-4|path-5|role-1 |+count
..
018046|path-100|path-200|path-300|path-50|role-1 |+count
...
018046|path-100|path-200|path-300|path-500|role-20 |+count
..
018046|path-200|path-3|path-4|path-5|path-6|role-1 |+count
.. (Mil/Bn cells)
018046|path-3|path-4||role-1 |+count
018046|path-3|path-4|path-5|role-1 |+count
018046|path-3|path-40|role-2 |+count
.. (Mil/Bn cells)

Meta-RS-N(2) (Meta Data)

Meta-Range, CID(2)
..
10|018046|path-3|path-4|role-1 |332|10|018046|path-3|path-40|role-2
..
10|018046|path-4|path-5|role-9 |333|10|018046|path-4|role-8
..

Manager (col-10)
CID(10)+RID(332) => rs{4}(endpoints)

Master-RS-N(1) (Master-Meta Data)

Master-Ranges for CID(1)
..
10|018046|path-3|role-1 |5|10|018046|path-4|role-8
..
51|day-n|col|start|key |6|200|day-n|col|end|key
..

Manager (col-1)
CID(2)+RID(5) => rs{2}(endpoints)

RS-4

RS (read/write) “/10/range/332/(cellstore/log)”RS-meta scan by the key for a range-id and mngr has addrRS-master scan by key for a range-id and mngr has addr

92 /September 16, 2020

https://thither.direct/opensearch/

SWC DB: Data topology author: Kashirin Alex
kashirin.alex@gmail.com

93 /September 16, 2020

Configuration Settings:
 swc.rgr.Range (defaults)

 .CellStore.count.max=10 , .CellStore.size.max=1GB , .block.size=64MB, .block.encoding=snappy, .compaction.size.percent=33

➔ Header: (17-byte)
Encoder, Data-Enc-Length, Data-Length, Cells-count, Checksum

➔ Data:
Cells (serialized)

Trailer:
➔ CS Key Interval: Begin + End
➔ Blocks-Index: CS position offset
➔ Blocks-Index size: Length
➔ Trailer-Start: CS position offset
➔ CS Version: Value(1)

Column (#):

. .
Column (#) ++

. .
Ranger (#) ++

Range (#), (Key Begin <= interval <= Key End):

. .
Range (#) ++

CellStore (#), (Key Begin <= interval < Key End):

. .
CellStore (#) ++ <= (swc.rgr.Range.CellStore.count.max)

. .
Block (#) ++ <= (swc.rgr.Range.CellStore.size.max / .DefaultBlockSize)

Blocks Index:
➔ Compressor: Type
➔ Uncompressed: Length
➔ Checksum:value
➔ Intervals: count
➔ Key Intervals:

 Begin() - End(k1,k5,k5,k5) : CS position offset
 Begin(k5,k5,k5,k5) - End(k1,k7,k7,k7) : CS position offset

Block (#), (Key Begin <= interval < Key End):

Range Definer (range.data):
➔ Header: (13-byte)

Version(i8), Data-Length(i32), Data-Checksum(i32), Header-Checksum(i32)
➔ Data:

CellStores-count(i32), [CellStore-ID(i32), Key-Interval Begin + End]

Ranger (#):

Commit Log, Fragment(#):
➔ Header: (7-byte)

Version(i8), Extension-Length(i32), Checksum(i32)
➔ Extension:

Interval, Encoder(i8), Enc-Data-Length(i32), Data-Length(i32), Cells-count(i32)
➔ Data:

Cells [Flag(i8) | Fractions-count(i8) | [Fraction(length(i24) | data)] | Control(i8) | Timestamp(i64) | Revision(i64) | Value-length(i32) | Value-Data]
Fragment (#) ++ >= (swc.rs.Range.CommitLog.roll.size)

File System (libswcdb_fs Libs: Local, FsBroker, HDFS,CEPH)

COLUMN PATH: .column/Col-ID(path)
SCHEMA: (COLUMN PATH)/schema.data
RANGE PATH: (COLUMN PATH)/range/Range-ID(path)
COMMIT-LOGS: (RANGE PATH)/log/fragment{N}.log
CELLSTORES: (RANGE PATH)/cs/{N}.cs
LAST_RANGER: (RANGE PATH)/ranger.data (addrs+rs{N})
RANGE_DATA: (RANGE PATH)/range.data

Manager{N} (dbManager)

One or Many, with standbys, manage ranges on columns ID range or all
 Default Configuration, Role All, columns all, port 15000:
 OR
 swc.mngr.host={SCHEMAS,RANGERS}|[1-9]|IPv4,IPv4,IPv6|PORT
 swc.mngr.host={SCHEMAS,RANGERS}|[1-9]|IPv4,IPv4,IPv6|PORT
 swc.mngr.host=[10-]|hostname-1|PORT
 swc.mngr.host=[10-]|hostname-2|PORT
 OR
 swc.mngr.host={SCHEMAS,RANGERS}|IPv4,IPv4,IPv6|PORT
 swc.mngr.host={SCHEMAS,RANGERS}|IPv4,IPv4,IPv6|PORT
 swc.mngr.host=[1-]|hostname-1|PORT
 swc.mngr.host=[1-]|hostname-2|PORT
 OR
 swc.mngr.host=hostname-1
 swc.mngr.host=IP-2

* handle rs{N} endpoints of a CID(column id) + RID(range id)
* assign ranges to Rangers and load balance (unload/assign Ranges)
* notify Rangers on Columns and Schema add, modify, and remove
* handle next range id for a column id
* handle Compaction requests of a CID
* in-sync with Manager in-chain with Schema and Ranger Server Status
* negotiate and elect managers for the nominated columns group
* GC on FS, in-case, ranges removed while cell-stores and logs remained

Ranger{N} (dbRanger)

Handle range scans and updates
Handle compaction + Split of Range

(System Reserved columns ids [1-9])

Master {N}
Handle master-ranges:
 column-[1-4]:
 Meta CID{5,8}-ranges: CID+KEY_START → CID+KEY_END)

Meta {N}
Handle meta-ranges:
 column-[5-8]:
 Data CID ranges: (CID+KEY_START → CID+KEY_END)

SWC-DB Client (libswcdb)

Handle Scan request: select and update(insert/delete):
 Scan requests (+ Range-Locator)
 Manage Communications to Rangers and Managers
Handle column add, remove and scheme updates

Clients

SWC DB: Applications author: Kashirin Alex
kashirin.alex@gmail.com

94 /

September 16, 2020

FsBroker (swcdbFsBroker)

Rangers UtilitiesThriftBrokerManagers User Application

Manager-Rangers
* assign rs{N} to new Ranger connection

Manager-Schemas
* handle Column Management: add, modify and remove
* handle request for column schema

Manager-Master - (manages columns 1-4)
* handle Master-Range Ranger Locator

DB-Client: libswcdb.so

SWC DB: Failure Tolerance

RgrRgr RgrRgr RgrRgr

Rgr Rgr

Rgr

Manager
cols[1-9](active)

Manager
cols[1-9](standby)

Manager
Cols[10-100](standby)

Manager
Cols[10-100](active)

Manager
Cols[100-1000](active)

Manager
Cols[100-1000](standby)

meta

Request
(on column 55)

Scan
 (CID-55, RID)

>>
(DATA)

get meta range
>>

CID, meta-RID, RS-N(addr)

Scan (CID-2, meta-RID)
>>

data(CID, RID)

Scan (CID-1)
>>

meta(CID, RID)

2

2.2

2.1

3

Rgr

metaRgr

meta

Manager
cols[ALL](standby)

master

DFS Nns DNs

✔ A failed request to a Manager is a connection fail-over to next in list from 'swc.mngr.host' configuration.

✔ A failed request to a Ranger(Master, Meta, Data)-N is fail-over to the new newly assigned Ranger(addr) by Manager.

✔ Manager, on interval or shut-down state of a managed Ranger(either role), request to load ranges to another Ranger.

✔ Distribute File System, depends on the system and it's feature of routing to a datanode .

✔ Managers or Rangers in case of a connection or file-descriptor failure try to reconnect to the DFS.

✔ Communications security, SSL applicable between servers for non-secure networks.

✔ Communication over-heads of resolved-data of column-name, RID-location and Ranger-address are kept on TTL/KA.

In worst case of outdated data being used with a request the Ranger return an error of a NOT_LOADED_RANGE.

author: Kashirin Alex
kashirin.alex@gmail.com

95 /September 16, 2020

get data range
>>

CID, RID, RS-N(addr)

2.3

scan-specs

scan-specs

scan-specs

scan-specs

scan-specs

1

Col-name
>>

(CID)

get column-ID by name => (cid)

Req. RS-MANAGER[cid-1](SCHEME-MNGR) – req, ([=”ReqColName”]) => (cid)

SWC DB: LIB-DB, Scan request (+ Range-Locator)

Ranges Scan is done on per column base in-parallel(a client's max-range-locators config) with column's Scan Specifications
Scan-Specifications = cid, ScanSpecCellKey(key_start, key_finish)

result = new_results = 0,

last_cell_key = rid(meta) = 0,

key_start(meta,data) = ScanSpec.key_start

DO get_ranges_data:

get range-data by (cid, key_start(meta,data), key_finish, rid(meta))

 => (cid,rid(data),rs{N}(addr), next_rid(meta,data)?, rid(meta))

 Req. RS-MANAGER[cid]:

If not rid(meta):

get range-meta by (cid, key_start(meta), key_finish)

=> (cid, rid(meta), rs-meta{N}(addr), next_rid(meta)?):

Req. RS-MANAGER[cid-1]:

get range-master-meta => (rid(meta), next_rid(meta)?)

Req. RS-MASTER:

Scan-do (2-cell)(cid-1, [>=”cid”, key_start(meta)], [<”cid”, key_finish]) = rid(meta)

get range-data by (cid, rid(meta), key_start(data), key_finish) => (cid, rid, rs{N}(addr), next_rid(data)?):

Req. RS-META - rs-meta{N}(addr):

Scan-do (2-cell)(cid-2, [>=”cid”, key_start(data)], [<”cid”, key_finish]) = rid(data)

If no range-data:

goto finish

EXCEPT COMM:

goto get_ranges_data

Basic Process Flow of Scan request (+ Range-Locator)

DO scan_range_data:

scan range-data by (cid, rid(data), ScanSpecs) => (new_results):

Req. RS-DATA – rs{N}(addr):

Scan-do (cell-limit) (ScanSpecs) = results(data)

 if new_results

 (call_back) (available results), result+=new_results

last_cell_key=more_results[-1]

EXCEPT COMM, NOT_LOADED_RANGE:

goto get_ranges_data

if result < limit(cell_limit):

Move Scan Offset by key_start changed to last_cell_key, setting -ge comparator to -gt

if next_rid(data):

start_key(data) = last_cell_key

goto get_ranges_data

if next_rid(meta):

rid(meta) = 0

start_key(meta) = last_cell_key

goto get_ranges_data

DO finish:

return result (call_back)

1

2

2.1

2.2

3

author: Kashirin Alex
kashirin.alex@gmail.com

96 /September 16, 2020

2.3

SWC DB: Query (SQL) scan author: Kashirin Alex
kashirin.alex@gmail.com

 select [where_clause [Columns-Intervals or Cells-Intervals]] [Flags(global-scope)];

 Flags: at global-scope apply to Cells-Interval flags to which does not have flags definitions

 [only_keys] = TRUE on set # default FALSE
 [only_deletes] = TRUE on set # default FALSE
 [limit = NUMBER(uint32_t)] # default ALL
 [limit_by = ”KEYS” or “..”] # default KEYS
 [offset = NUMBER(uint32_t)] # default 0
 [offset_by = ”KEYS” or “..”] # default KEYS
 [max_versions = NUMBER(uint32_t)] # default ALL

 Columns-Intervals: if not set, it is all columns from key start to finish.

 col(column-name-a1) = ([Cells-Intervals] [and] [Cells-Intervals] [and] .. [Cells-Intervals])
 [and] ..
 col(column-name-b1, .., column-name-b2) = ([Cells-Intervals] [and] [Cells-Intervals] [and] .. [Cells-Intervals])

 Cells-Interval:

 [Condition-Range] [and] [Condition-Key] [and] [Condition-Value] [and] [Condition-Timestamp]

 Condition-Key: key comparator apply to every fraction that do not have a dedicated comparator, exact-match is key=('k1', 'k2',,,'kN')

 Key [<|<=|>|>=|=] [[comparator] “str-1”, [comparator] ”str-2”, [comparator] ”str-3”, [comparator] ”str-N”]

 or (an interval)

 [[comparator] “str-1”, [comparator] ”str-N”] [<=] key [<=] [[comparator] “str-1”, [comparator] ”str-N”]

 Comparator:

 [=^] : prefix (starts-with)
 [>] : -gt (greater-than)
 [>=] : -ge (greater-equal)
 [=] : -eq (equal)
 [<=] : -le (lower-equal)
 [<] : -lt (lower-than)
 [!=] : -ne (not-equal)
 [re] : regexp (regular-expression)

 Condition-Value:

 value [comparator(extended logic options: GE,LE,GT,LT are LEXIC and with 'V' VOLUME as -VGE)] “string”

 or (for columns of counter type), not applicable comparators (prefix and regexp)

 value [comparator] “int64_t(string)”

 Condition-Timestamp: not applicable comparators (prefix and regexp)

 timestamp [comparator] “YYYY/MM/DD HH:MM:ss.mmmuuunnn”

 or (an interval)

 “YYYY/MM/DD HH:MM:ss.mmmuuunnn” [<= or <] timestamp [<= or <] “YYYY/MM/DD HH:MM:ss.mmmuuunnn”

 Cells-Intervals: if not set, it is key start to finish.

 cells = ([Cells-Interval] Flags(interval-scope))
 [and]..
 cells = ([Cells-Interval] Flags(interval-scope))

 An Example:

 select
 where
 col(ColNameA1) = (
 cells = (range >= ['1-'] and ([>='1-'] <= key = [<='1-1-',=”1”] and value = ”Value-Data-1” and timestamp > “2010/05/29” limit=10 limit_by=”KEYS”)
)
 and
 col(ColNameB1, ColNameB2) = (
 cells = ([>='2-'] <= key = [<='2-2-',”1”] and value = ”Value-Data-2” and timestamp > “2010/05/29”)
 and
 cells = (key = [<='21-',”1”] and timestamp > “2010/05/29”)
)
 max_versions=1;

97 /September 16, 2020

 Condition-Range: The applicable ranges for a scan, comparators are always -ge or -le

 Cell::Key [<=] range [<=] Cell::Key

SWC DB: Scan Specs & Results author: Kashirin Alex
kashirin.alex@gmail.com

Result (

 List<Col> cols
 // ResponseFlag status = OK/PARTIAL/ERROR
 // Strings error_rs = [“N”,]

)

SpecsScan (

 Columns columns;
 Flags flags;

)

Scan Specs, lib-DB-Client:

SpecsColumn (

 int64_t cid;
 Intervals intervals;

)

The object-type is applied to the range-locator (Client)

SpecsInterval (

 Cell::Key range_begin, range_end;
 Key key_start, key_finish;
 Value value;
 Timestamp ts_start, ts_finish;
 Flags flags;

 Cell::Key offset_key;
 int64_t offset_rev;

)

SpecsValue (

 uint8_t* data;
 uint32_t size;
 Condition::Comp comp;

)

SpecsTimestamp (

 int64_t value;
 Condition::Comp comp;

)

Scan Response, lib-DB-Client:

Col (

 String name
 String id
 List<Cell> cells

)

Cell (

 list<c-array> key
 int64_t timestamp
 c-array value
 uint32_t value_len

)

98 /September 16, 2020

SpecsFlags (

 uint32_t limit, offset, max_versions;
 uint8_t options;

)

SpecsKey (

 uint32_t count;
 uint32_t size;
 uint8_t* data(serial);

)

SWC DB: Column Schema & Actions on Columns author: Kashirin Alex
kashirin.alex@gmail.com

99 /

Configuration Options:

The following configurations available in the Column-Schema:

● COLUMN-LEVEL:
NAME: (string) - column-name
CID: (uint64_t) - column-id
TYPE: (enum) - plain/counter_i8/counter_i16/counter_i32/counter_i64, default - PLAIN

● CELL-LEVEL:
TTL: (uint32_t) – Time To Live in seconds
MAX_VERSIONS: (uint32_t) - default 1 - not applicable with COUNTER

● BLOCK-LEVEL:
ENCODING: (enum) - none/snappy/zlib (..zstd/bmz/lzo/quicklz)
BLOCKSIZE: (uint32_t) - size of a block
CELLS: (uint32_t) - number of cells in a block

● CELLSSTORE-LEVEL:
REPLICATION: (int8_t) – replication factor applied to the DFS supporting file-replication , default 3
SIZE: (int32_t) – max allowed cellstore size in bytes

● RANGE-LEVEL:
CS-MAX: (int8_t) – number of cellstores allowed in a range before range-split
COMPACT-%: (int8_t) – relative percentage to cellstores-volume allowed without compaction

Although, there are schemas in the SWC-DB these can be considered as schema-less, exception to TTL, Counter and Max-Versions at the Cells level.

September 16, 2020

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

